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EXPERIMENTAL VERIFICATION OF A DOUBLE-DEAD-TIME MODEL 
DESCRIBING CHUGGING I N  LIQUID-BIPROPEWT ROCKET ENGINES 

by John R. Szuch and Leon M. Wenzel 
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ABSTRACT 

S t a b i l i t y  l i m i t s  were determined, experimentally, f o r  a 2-inch diame- 

a chamber pres- 
a sure  of 650 psia,  contract ion r a t i o  o f  16.8, and a chamber pressure o f  300 
cu psia,  contract ion r a t i o  of 8.4. The oxidant-fuel w e i g h t  r a t i o  w a s  maintained 
dc I w 

t e r  rocket engine. 
Boundaries were determined f o r  two engine configurations:  

Liquid oxygen and gaseous hydrogen were the  propel lants .  

a t  5.0 w i t h  a c h a r a c t e r i s t i c  length of  approximately 95 inches. 

For comparison w i t h  experimental data, s t a b i l i t y  boundaries were gener- 
ated on t h e  analog computer, using t h e  chugging model proposed by t h e  authors 
and values of combustion delay, as determined from an ex i s t ing  vaporizat ion 
model. Experimental and computer data  agreed with regard t o  observed chug- 
ging frequencies and boundary shape. 
( requi red  i n j e c t o r  pressure drops) were a t t r i b u t e d  t o  a high combustion noise  
l e v e l  caused by t h e  in j ec t ion  system used. 
supported by noting observations made on seve ra l  large-scale  engines. 

Discrepancies i n  boundary loca t ion  

The proposed model is further 

INTRODUCTION 

Low frequency i n s t a b i l i t i e s  i n  l iquid-propel lant  rocket engines, com- 
monly r e fe r r ed  t o  as chugging, have been the subjec t  of many analyses during 
t h e  pas t  two decades (1, 2, 3). 
ver i fy ,  experimentally, t h e  chugging model advanced by t h e  authors (4). A 
comparison of t h e  proposed model and the  commonly used, single-delay model 
i s  made i n  figure 1. I n  both cases, a completely decoupled feed-system is  
assumed. 
pl iances  . 

The purpme of t h i s  inves t iga t ion  was t o  

That is, in j ec to r  pressures are non-varying due t o  high dome com- 

For t h e  single-delay model, the  in j ec to r  flow rates a r e  acted upon by 
a s ing le  delay, usua l ly  assumed t o  be made up o f  t he  governing vaporization 
time, mixing and reac t ion  times. For an oxidizer- l imited system, t h i s  would 
be v a l i d  f o r  t h e  case o f  high f u e l  i n j ec to r  pressure drop (5, 6 ) .  

To analyze chugging over a wide range of operat ion and/or when one of 
t h e  propel lan ts  i s  introduced as a gas, each propel lant  must be assumed t o  
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be acted u p n  by a d i s c r e t e  delay, made up of i t s  vaporization time ( i f  any) 
and t h e  mixing and reac t ion  times, common t o  both propel lants .  

Figure 2 shows t y p i c a l  s t a b i l i t y  boundaries f o r  both models, p lo t t ed  

The s ingle-delay boundary has 
a s  ra t ios  o f  i n j ec to r  pressure drop t o  chamber pressure. 
t h e  f u e l  i s  introduced as a gas (Tvf = 0 ) .  
t h e  typ ica l ,  hyperbolic shape with t h e  e n t i r e  boundary cor respnding  t o  one 
chugging frequency. 
t i c s :  a reversed-slope a t  high f u e l  AP, and a d iscont inui ty  i n  t h e  observed 
frequency along t h e  boundary. 
f o r  t h e  shaded operating p i n t  i n  figure 2. 
correspond t o  an unstable condition. 
s t a b l e  a t  the  lower frequency but  unstable a t  t h e  higher (435 Hz). 

For t h e  case shown, 

The double-delay boundary has two d i s t i n c t  charac te r i s -  

Figure 3 contains a Nyquist s t a b i l i t y  p l o t  

A s  indicated,  t h i s  p i n t  would be 
Encirclements o f  t h e  -1 p i n t  

APPARATUS 

Figure 4 i l l u s t r a t e s  t h e  i n j e c t o r  design used i n  t h i s  study. High fuel 
i n j e c t o r  compliance w a s  provided by c l se ly -coup l ing  a l a rge  plenum t o  t h e  
i n j e c t o r  cavity.  For t he  LOX in j ec to r ,  t h e  compliance had t o  be increased 
mechanically. A t h i n  Inconel diaphragm, supported by gas pressure and t h e  
perforated p la te ,  w a s  designed t o  a t tenuate  pressure o s c i l l a t i o n s  during 
chugging. Careful design w a s  required t o  prevent coupling with t h e  i n e r t -  
ance of t h e  p l a t e  holes i n  t h e  frequency range of i n t e r e s t .  Variations i n  
f u e l  and oxidizer  i n j ec to r  AP's were accomplished by changing Rigimesh 
thickness  and o r i f i c e  diameter, respectively.  Copper-chambers, 2 inches i n  
diameter, with lengths ranging from 2 . 1 t o  12.5 inches were used. 
cooled nozzles, with contract ion ratios of 8.4 and 16.8 w e r e  run a t  nominal 
chamber pressures of 300 and 650 psia ,  respect ively.  The LOX flow rate w a s  
nominally .55 pound per  second a t  an O/F o f  5.0. 

Water- 

PROCEDURE 

To a i d  i n  t h e  ana lys i s  of t h e  system and t o  f a c i l i t a t e  t h e  planning o f  
experiments, cold-flow tests were conducted on both propel lant  systems. A 
minimum LOX aP of 60 ps i a  w a s  a t t a ined  a t  t h e  r a t ed  flow rate with no o r i -  
f i c e  i n  t h e  system. The pressure-drop and flow rate were r e l a t e d  by t h e  
familiar square-law. The hydrogen cold-flow and hot-run i n j e c t o r  data  w a s  
matched by assuming constant temperature and a l i n e a r  pressure gradient  
through t h e  Rigimesh. A modified square-law was used with t h e  average den- 
s i t y  computed from t h e  sum o f  upstream and downstream pressure. 

. Because of t h e  r e l a t i v e  ease i n  changing t h e  o r i f i c e  between runs, 
boundaries were determined by cu t t i ng  hor izonta l ly  across  t h e  nP/P map. 
Or i f i ce  s i z e  w a s  increased u n t i l  a t r a n s i t i o n  from s t a b l e  t o  unstable opera- 
t i o n  w a s  noted. System operation was  open-loop with i t e r a t i o n s  i n  supply 
pressures  required t o  achieve the  desired f l o w  conditions. 
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MPERlNE2J'IAL RESULTS 

I For t he  engine considered, t h e  t r a n s i t i o n  from "stable"  t o  "unstable" 
operation was a gradual one with seemingly random f luc tua t ions  i n  t h e  ampli- 
tude of chamber pressure osc i l l a t ions .  Due t o  t h i s  randomness, a s t a b i l i t y  
c r i t e r ion ,  based on a time-average over a s e t  port ion of  t h e  run, had t o  be 
chosen. 
t i o n  w a s  
t h a t ,  i n  a l l  cases, t h e  r e su l t an t  o s c i l l a t i o n  could be considered as having 
two dominant frequency components. 
o s c i l l a t i o n s  were f i l t e r e d  and analyzed a t  those frequencies. 

A l i m i t  on the  allowable RMS value o f  t h e  chamber pressure o s c i l l a -  
s e t  a t  10 percent of t he  mean pressure. Spectrum analys is  showed 

The recording of t h e  chamber pressure 

The r e su l t an t  boundary f o r  t h e  high chamber pressure case i s  shown i n  
Frequencies i n  both t h e  f igu re  5, with t h e  determining da ta  paints  shown. 

70 and 170 Hz ranges were observed. 
i n  fuel AP/P from 0.4 t o  0.2 s t a b i l i z e s  t h e  engine. 

A t  an oxidizer  aP/P of 0.4, a reduction 

Figure 6 contains t h e  r e s u l t a n t  boundary f o r  t h e  low chamber pressure 

t h e  e f f e c t  of reduced fuel veloc- 

However, both cha rac t e r i s t i c s  o f  t h e  double- 

case. 
Fbssible causes being invest igated are: 
i t y  on oxid izer  drop s i z e  and vaparization rate, and a possible  coupling 
e f f e c t  from t h e  feed system. 
dead-time model were observed with chugging i n  t h e  40 and 110 Hz ranges. 

A bending back of t h e  boundary x c u r s  a t  a f u e l  AP/P of about 0.3. 

ANALYSIS 

For comparison with t h e  experimental data,  s t a b i l i t y  boundaries were 
generated on t h e  analog computer using t h e  system equations ( 4 ) ,  and LOX 
vaporizat ion times, computed using t h e  methods of P r i e m  and Heidmann ( 7 ) .  
Mean oxid izer  drop s i zes  were computed from combustion efficiency-chamber 
length  data obtained a t  a chamber pressure o f  300 psia.  Lengths required 
t o  vaporize 50 percent o f  t h e  oxidizer  mass were computed t o  be: 
a t  a chamber pressure o f  300 ps i a  with an in j ec t ion  ve loc i ty  of 735 in/sec,  
and 3.6 inches a t  a chamber pressure of  650 ps ia  with an in j ec t ion  ve loc i ty  
of 762 in/sec.  Assuming that t h e  average drople t  ve loc i ty  over t h i s  length 
i s  t h e  i n j e c t i o n  veloci ty ,  t h e  v a p r i z a t i o n  time (time t o  vaporize 50 per- 
cent)  w a s  computed t o  be 7.5 m s  a t  300 psia ,  and 4.7 m s  a t  650 psia.  Based 
on t h e  observed chugging frequencies a t  high fuel aP/P's, mixing times were 
determined from Ttotal- T ~ ~ ,  where T t o t a l  i s  t h e  t o t a l  delay required t o  
s a t i s f y  t h e  phase requirement f o r  neu t r a l  s t a b i l i t y .  
were 3.8 m s  a t  300 psia ,  and 2.0 m s  at 650 psia.  
values o f  delay were made on t h e  computer t o  match t h e  observed frequen- 
c i e s  f o r  both ranges of chugging. 

I n  an attempt t o  dupl icate  the  boundary pos i t ion  and chamber pressure 

5.5 inches 

The r e s u l t a n t  values 
F ina l  adjustments o f  a l l  

waveshape, white noise  was superimposed on t h e  simulated products of com- 
bus t ion  a t  P, = 650 psia.  
matching t h e  observed r a t i o  of RMS t o  mean chamber pressure amplitudes a t  

The required noise l e v e l  was determined by 
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"s tab le"  va lues  of i n j e c t o r  aP/P's. 
o s c i l l a t i o n s ,  was determined. 

A noise  l e v e l ,  r e s u l t i n g  i n  7 percent  

A comparison 3f t h e  experimental  and computer boundaries f o r  bo th  con- 
f i g u r a t i o n s  a r e  given i n  f i g u r e s  7 and 8. 
dev ia t ions  occur a t  low values  o f  f u e l  aP/P c r e a t i n g  some doubt as t o  t h e  
v a l i d i t y  of  t h e  se l ec t ed  s tab i l i ty  c r i t e r i o n  a t  values  of  aP/P below 0.1. 
The r e s u l t s  a t  t h e  low chamber pressure i n d i c a t e  t h e  p o s s i b i l i t y  t h a t  t h e  
absolu te  noise  l e v e l  is  a func t ion  of i n j e c t o r  conf igura t ion  r a t h e r  than  
chamber pressure.  

For t h e  high chamber pressure case,  

SUMMARY OF RESULTS 

Experimental t e s t i n g  and ana lys i s ,  repor ted  here in ,  y ie lded  the fol lowing 
r e s u l t s  : 

, 

1. 

2. 

3. 

4. 

The v a l i d i t y  of t h e  double-dead-time model has been demonstrated. 
Both conf igura t ions  exhib i ted  t h e  c h a r a c t e r i s t i c  behavior of  t h e  
proposed model. 

Values 3f LOX vapor iza t ion  time requi red  t o  match t h e  observed 
chugging frequencies ,  were within 7 percent  of those  pred ic ted  
by Priem and Heidmann. 

Mixing times must be  i n f e r r e d  from t h e  observed f requencies  and 
vapor iza t ion  times. 

The c l a s s i f i c a t i o n  of da t a  a s  stable or uns tab le ,  t oge the r  with t h e  
r e s u l t i n g  boundary pos i t i on ,  were inf luenced by t h e  high combustion 
noise  level caused by t h e  coarse i n j e c t i o n  technique used. 

CONCLUDING REMARKS 

Preliminary d a t a  from tests being conducted on a seven-element, concent r ic  
tube  i n j e c t o r  wi th  a cont rac t ion  r a t i o  of 1.9, i nd ica t e  a sharp  t r a n s i t i o n  from 
stable t o  diverging,  unstable operat ion a t  i n j e c t o r  AP's very  c l o s e  t o  t h e  
t h e o r e t i c a l  values. The observed frequencies  i n d i c a t e  a LOX v a p r i z a t i o n  time 
c l o s e  t o  t h a t  p red ic ted  wi th  a mare t y p i c a l  mixing time of  0 . 2  t o  0.4 m s .  

Analysis  of chugging da ta  obtained on var ious  f u l l - s c a l e  engines has 
emphasized t h e  need t o  t rea t  t h e  combustion delays separa te ly .  M - 1  chugging 
data has  been explained us ing  t h e  double-dead-time model, Priem's v a p r i z a t i o n  
times, and mixing times around 0 . 2  m s .  Data from t h e  5-2 engine (8)  ind ica t ed  
t h e  p s s i b i l i t y  of s t a b i l i z a t i o n  by decreasing t h e  fue l  aP/P. Recent chugging 
exper ience  on t h e  L,EM Ascent Engine ind ica t e s  a "second-mode'' i n s t a b i l i t y  wi th  
de lays  c o n s i s t e n t  wi th  pred ic t ions  made by Priem and Heidmann. 
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COMPARISON OF STABILITY LIMIT MODELS FOR BI-PROPELLANT ROCKET ENGINES 
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(B) DOUBLE DEAD-TIME MODEL. 

Figure 1 

TYPICAL STABILITY BOUNDARY FOR DOUBLE DEAD-TIME MODEL 

T v f  = 0, T~~ = 1 . 7 5  m s ,  = 1.0 m s ,  0 = 0 . 7  m s  9 
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TYPICAL FREQUENCY RESPONSE BEHAVIOR FOR 
DOUBLE DEAD-TIME MODEL 
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Figure 3 
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EXPERIMENTALLY DETERMINED STABILITY BOUNDARY 

P, = 650 P S I A ,  O I F  = 5.0, w, = 0.55 L B I S E C ,  L *  = 91.0 I N .  

. 2 -  

.8: 

.6 
F U E L  I N J E C T O R  , 4 -  

P R E S S U R E  D R O P  
R A T I O ,  

hPIf 
PC 

.Os: 

.06 

L O W  H I G H  
F R E Q .  F R E Q .  

0 S T A B L E  S T A B L E  
0 U N S T A B L E  U N S T A B L E  

0 S T A B L E  U N S T A B L E  + U N S T A B L E  S T A B L E  

1r 
. 8 1  
.6- 

O B S E R V E D  

0 68 - 78 H Z  
F R E Q U E N C I E S :  

150 - 198 H Z  

F U E L  I N J E C T O R  ‘ 4  
P R E S S U R E  D R O P  

R A T I O ,  

PC 

. 0 6  

. 0 4  
. 1  . 2  . 4  . 6  . 8  1 

L O X  I N J E C T O R  P R E S S U R E  D R O P  
R A T I O ,  APIoIP, 

Figure 5 

0 S T A B L E  U N S T A B L E  
U N S T A B L E  S T A B L E  

1r 

- 
- 

- 

#/’ ,g F R E Q U E N C I E S :  O B S E R V E D  

0 

41 - 46 H Z  m --c 

1 -  100 - 112 H Z  

I I I I I I I  

C S -44315 



I w 

COMPARISON OF EXPERIMENTAL AND SIMULATION STABILITY BOUNDARIES 
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Figure 7 

COMPARISONS OF EXPERIMENTAL AND SIMULATION 
STABILITY BOUNDARIES 
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